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Abstract

We first review the derivation of the exact expression for the av-

erage distance 〈rn〉 of the n-th neighbour of a reference point among
a set of N random points distributed uniformly in a unit volume of a

D-dimensional geometric space. Next we propose a ‘mean-field’ the-
ory of 〈rn〉 and compare it with the exact result. The result of the

‘mean-field’ theory is found to agree with the exact expression only in
the limit D → ∞ and n → ∞. Thus the ‘mean-field’ approximation

is useless in this context.
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1 Introduction to the average n-th neighbour

distance

Consider N (a large number) points distributed randomly and uniformly in
a unit volume of a D-dimensional geometric space. A point is said to be the
n-th neighbour of another (the reference point) if there are exactly n−1 other
points that are closer to the latter than the former. The average distance
to the first neighbour is exactly known [1]; though originally calculated in
three dimensions the method can be used for any finite dimension D : The
probability distribution P (r1)dr1 of the first neighbour distance is defined by
the probability of finding the first neighbour of a given reference point at a
distance between r1 and r1 + dr1 :

P (r1) dr1 = [1− V (r1)]N−1 (N − 1) dV (r1), (1)

where V (r1) = πD/2 · (r1)D/Γ(D/2 + 1) is the volume of a D-dimensional
hypersphere of radius r1 centered at the reference point. The average first
neighbour distance is defined as :

〈r1〉 =
∫ R

0
r1 P (r1) dr1, (2)

where R is the radius of a D-dimensional hypersphere of unit volume :

R =
1

π1/2

[
Γ
(
D

2
+ 1

)]1/D

. (3)

With the probability distribution of equation 1 we get

〈r1〉 =
∫ 1

0
r1 [1− V (r1)]N−1 (N − 1) dV (r1)

=
1

π1/2

[
Γ
(
D

2
+ 1

)]1/D

Γ
(

1 +
1

D

) (
1

N

)1/D

. (4)

Now we address the general problem : What is the form of the aver-
age n-th neighbour distance, for any finite n? Though this is a problem of
purely geometric nature, the quantity

〈
r

(D)
N (n)

〉
is relevant in physical and

computational contexts; for example, in astrophysics we need to know the
average distance between neighbouring stars distributed independently in a
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homogeneous universe [2], and in the traveling salesman problem we need
the average distance of the neighbours of each site for estimating the optimal
path-length [3].

We proceed by extending the line of argument used in the case of the first
neighbour [1] to the n-th neighbour. The probability distribution of the n-th
neighbour distance rn is defined as the probablity P (rn)drn of finding the n-
th neighbour of a given reference point at a distance between rn and rn+drn.
This is a conditional probability because we look for the n-th neighbour of a
point when its first (n− 1) neighbours have already been located :

P (rn) drn =

[
1− V (rn)− V (rn−1)

1 − V (rn−1)

]N−n
(N − n) dV (rn)

1 − V (rn−1)
. (5)

The quantity V (rn) is the volume of a D-dimensional hypersphere of radius
rn centered at the reference point. For a given reference point and its first
n− 1 neighbours the average n-th neighbour distance is obtained as :

〈rn〉(particular) =
∫ R

rn−1

rn P (rn) drn (6)

where, as before, R is the radius of a D-dimensional hypersphere of unit
volume. The quantity 〈rn〉(particular) is a function of a particular rn−1, rn−2, . . .,
r1 which are the distances of the first n− 1 neighbours of the given reference
point. To calculate the ensemble average of rn the quantity 〈rn〉(particular)

must be averaged successively over the probability distributions of each of
the first n− 1 neighbours :

〈rn〉 =
∫ R

0
dr1 P (r1)

∫ R

r1
dr2 P (r2) · · ·

∫ R

rn−3

drn−2 P (rn−2)

×
∫ R

rn−2

drn−1 P (rn−1)
∫ R

rn−1

drn rn P (rn) (7)

where the probability distribution of the i-th neighbour is given by equation
5 with i replacing n. After a change in the order of the integrals in equation
7 :
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〈rn〉 = (N − 1)(N − 2) · · · (N − n)

[
Γ
(
D
2

+ 1
)]1/D

π1/2

×
∫ 1

0
dV (rn) [V (rn)]

1/D
[1− V (rn)]

N−n
∫ V (rn)

0
dr1

×
∫ V (rn)

V (r1)
dr2 · · ·

∫ V (rn)

V (rn−3)
drn−2

∫ V (rn)

V (rn−2)
drn−1 (8)

which gives the final form of the average n-th neighbour distance :

〈rn〉 =
∫ 1

0

(
N − 1
n− 1

)
[V (rn)]

n+(1/D)−1
[1− V (rn)]

N−n
(N − n) dV (rn)

=
1

π1/2

[
Γ
(
D

2
+ 1

)]1/D Γ
(
n + 1

D

)

Γ(n)

(
1

N

)1/D

. (9)

This result was reported in [4].
Next we consider fluctuations δrn occuring in rn. This can be calculated

exactly for any neighbour n ; the mean square deviation in rn from its average
value is given by :

(δrn)2 =
〈
r2
n

〉
− 〈rn〉2

=
1

π

[
Γ
(
D

2
+ 1

)]2/D

Γ

(
n+ 2

D

)

Γ(n)
−

Γ2
(
n+ 1

D

)

Γ2(n)



(

1

N

)2/D

(10)

which vanishes as D → ∞. This suggests that the form of 〈rn〉 for large D
can be arrived at by neglecting fluctuations, an approach which corresponds
to mean-field theories in statistical mechanics.

2 A ‘mean-field’ theory

By the following ‘mean-field’ argument we derive an expression for the aver-
age n-th neighbour distance in large dimensions D. Since the average first
neighbour distance can be found easily, we derive 〈rn〉 in terms of 〈r1〉. As
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before we consider N (a large number of) random points distributed uni-
formly within a unit volume of a D-dimensional geometric space. We choose
any one of them as the reference point and locate its n-th neighbour. Ne-
glecting fluctuations, which we can do for large D, the distance between
them is rn(N) ≈ 〈rn(N)〉. Keeping these two points fixed we change the
number of points in the unit volume to Nα by adding or removing points at
random; the factor α is arbitrary to the extent that Nα and nα are natural
numbers. Since the distribution of points is uniform, the hypersphere that
had originally enclosed just n points will now contain nα points. Therefore,
what was originally the n-th neighbour of the reference point now becomes
the nα-th neighbour. Since the two points under consideration are fixed, so
is the distance between them. Consequently,

〈rn(N)〉 ≈ 〈rnα(Nα)〉 . (11)

Now we take α = 1/n, so that

〈rn(N)〉 ≈ 〈r1(N/n)〉 , (12)

which shows that the average n-th neighbour distance for a set of N random
points distributed uniformly is approximately given by the average distance
for a depleted set of N/n random points in the same volume. Using the
expression for 〈r1(N)〉 from equation 4 we get

〈rn〉 ≈
1

π1/2

[
Γ
(
D

2
+ 1

)]1/D

Γ
(

1 +
1

D

) (
n

N

)1/D

. (13)

Since the above argument neglects fluctuations the result of equation 13
ought to be exact in the limit D →∞.

The exact expression of 〈rn〉 for a finite dimension D is expected to reduce
to the form of equation 13 as D → ∞ where fluctuations do not affect. For
large D equation 9 takes the following form :

〈rn〉 ≈
1

π1/2

[
Γ
(
D

2
+ 1

)]1/D

Γ
(

1 +
1

D

) (
1 +

1

D

n−1∑

k=1

1

k

)(
1

N

)1/D

. (14)

For the above expression to reduce to the form of equation 13 the sum
∑n−1
k=1

1
k

must be equal to loge n which happens only in the limit n→∞. Thus for any
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finite n the exact result of equation 9 fails to produce the fluctuation-free form
of equation 13 in large dimensions D. This shows that the ‘mean-field’ ap-
proximation is useless in the present context. However the ‘mean-field’ ap-
proach for 〈rn〉 may be used as a crude approximation in other distributions
(non-uniform) of random points where an exact calculation is not possible
beyond the first neighbour.
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